Preparation and characterisation of new oxovanadium(IV) Schiff base complexes derived from salicylaldehyde and simple dipeptides

J. Costa Pessoa a,*, I. Cavaco a,1, I. Correia a, D. Costa1 a, R.T. Henriques a,b, R.D. Gillard c

a Centro Química Estrutural, Instituto Superior Técnico, A. R. Rovisco Pais, 1049-001 Lisbon, Portugal
b Instituto Tecnológico e Nuclear, Departamento de Química, Estrada Nacional 10, 2685 Sacavém, Portugal
c Department of Chemistry, University of Wales, PO Box 912, Cardiff CF1 3TB, UK

Received 10 November 1999; accepted 28 February 2000

Abstract

A range of mostly new oxovanadium(IV) complexes is described. They contain coordinated Schiff bases, made from simple dipeptides (glycylglycine, glycylsarcosine, L-alanylglycine, L-alanyl-L-alanine, D,L-alanyl-D,L-alanine and L-serylglycine), and salicylaldehyde. The compounds are characterised and the nature of their coordination spheres shown by analysis, TLC, by appropriate spectroscopy (EPR, IR, electronic and circular dichroism of solution and solids) and by magnetic susceptibility measurements. Serylglycine and threonylglycine are formed by reaction of VO(salGlyGly) with formaldehyde and acetaldehyde, respectively. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Vanadium complexes; Schiff base complexes; Dipeptide complexes

1. Introduction

While complexes of N-salicylideneamino acids have been the subject of extensive research, typified by their vanadium compounds [1–19], little attention has been given to Schiff bases derived from simple peptides. N-Salicylideneamino acid vanadium(IV) and (V) complexes often have coordination geometries such as those in I or II [3–5,11,12]. In a few cases, dimeric oxo-bridged VIV–O–VV or VVV–O–VV compounds III have been obtained [4,5,11,13,15]. The present paper deals with the preparation of several complexes containing IV, a Schiff base ligand resulting from the condensation of a dipeptide with salicylaldehyde. The dipeptides are glycylglycine (GlyGly), glycylsarcosine (GlySar), L-alanylsarcosine (AlaSar), L-alanylglycine (AlaGly), L-alanyl-L-alanine (AlaAla), D,L-alanyl-D,L-alanine (D,L-Ala-D,L-Ala) and L-serylglycine (SerGly). The complexes were characterised by elemental analysis, IR, EPR, electronic and circular dichroism spectroscopy. In some cases, magnetic moments were measured in the range 5–296 K. Solids were also similarly obtained with glycyl-L-alanine (GlyAla), glycyl-L-aspartic acid (GlyAsp) and L-serylglycine (SerGly), but their elemental analyses do not fit the formulations very closely.
To our knowledge, of the compounds we describe, only the vanadium complex VO\((\text{Sal-GlyGly})(\text{H}_2\text{O})\)\(_n\) (1) with \(n = 1.5 - 3.0\), containing ligand IV (\(R_1 = R_2 = R_3 = \text{H}\)) is known [16]. Its formulation was based on the elemental analysis (C, H, N, S, V, Na), IR, TLC, TG-DSC, and magnetic susceptibility measurements, where \(\mu_{\text{eff}} \approx 1.75\) BM in the range: 25–300 K. It is only very slightly soluble in common solvents and practically insoluble in water. In attempts to obtain crystals of this compound, \((\text{NH}_4)_4(\text{Na})_2[\text{V}_{10}\text{O}_{28}]\cdot 10\text{H}_2\text{O}\) have been reported for the metal ion is required in model studies as a template for VO(salThrGly) complexes which after hydrolysis with deaminations producing \(\text{NH}_4^+\), identified as a counter ion of the decavanadate.

The enhanced roles of metal ions in non-enzymatic pyridoxal-mediated reactions in model systems (e.g. transaminations, racemisations, decarboxylations, eliminations) have been extensively studied (e.g. [20–23]); an intermediate Schiff-base is expected to form, and a metal ion is required in model studies as a template and/or to stabilise the resulting product. With vanadium in the presence of salicylaldehyde, racemisations (for the L-serine, L-asparagine and L-histidine systems), and decompositions of deaminations producing (\(\text{NH}_4)_4(\text{Na})_2[\text{V}_{10}\text{O}_{28}]\cdot 10\text{H}_2\text{O}\) have been reported for the GlyGly system [16] and Thr system [19], and is also reported here for the GlyAla and AlaGly systems. Oxovanadium(IV)\(_2\) is also one of the most active metal ions in \(\beta\)-eliminations [24,25]; examples of the reverse type of reaction have been discussed previously [3,5,17,19] for similar eneamino acidato compounds. Elemental analyses are described previously [3,5,17,19] for similar non-salicylideneamino acidato compounds. Elemental analyses are included and characterised by X-ray diffraction as VO(salGlyGly)\(_2\) \(\text{H}_2\text{O}\) and \(\text{NH}_4\)\(_4\)\((\text{Na})_2[\text{V}_{10}\text{O}_{28}]\cdot 10\text{H}_2\text{O}\), ir and decomposition producing \(\text{NH}_4^+\), identified as a counter ion of the decavanadate.

2. Experimental

2.1. Synthesis of Schiff base complexes

The Schiff base complexes were obtained as described previously [3,5,17,19] for similar N-salicylideneamino acidato compounds. Elemental analyses are in Table 1. For 1–5 these are the expected range. However those for VO(salAlaGly) (6), VO(salGlyGly) (7), VO(salGlySar) (8) and VO(salGlySer) (9) are not satisfactory. While for GlyGly, GlySar, AlaSar, AlaAla, GlyAla, GlyGly, precipitation occurred during, or shortly after, the addition of the \(\text{V}^{IV}\)\(_{2+}\) solution to the mixture containing salicylaldehyde and dipeptide, it took 1 h for GlySer, and AlaGly, 1 day for GlyAla, and 2 days for SerGly. For the GlyAla and AlaGly systems, after separation of the solids by filtration, the mother liquor was left in the refrigerator. Two (GlyAla) or four (AlaGly) weeks later, orange–brown crystals were collected and characterised by X-ray diffraction as \((\text{NH}_4)_4(\text{Na})_2[\text{V}_{10}\text{O}_{28}]\cdot 10\text{H}_2\text{O}\).

2.2. HPLC experiments

These were performed using Jasco HPLC system including a Jasco 870-UV (absorbance) and 821-FP (fluorescence) detectors. A Rheonine 7125 injection valve (20 µl loop) and a reverse phase column (LChromsorb C\(_{18}\), 5 µm particles, 250 x 4 mm) were used. The eluent (9% methanol, 5.2% THF, 4.2% acetonitrile and 0.1 M sodium acetate aqueous solution at pH 6.8) was always filtered before use (45 µm filters), degassed and its flow was 1.0 ml min\(^{-1}\). The dipeptides were analysed using the precolumn derivatisation o-phthalid-

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>%C</th>
<th>%H</th>
<th>%N</th>
<th>%V; %Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO(sal-GlyGly)(H(_2)O)(_2)</td>
<td>39.2</td>
<td>4.0</td>
<td>8.0</td>
<td>15.8 ± 1; <0.2</td>
</tr>
<tr>
<td>VO(sal-GlyGly)(H(_2)O)(_2)</td>
<td>39.18</td>
<td>4.19</td>
<td>8.31</td>
<td>15.1; 0</td>
</tr>
<tr>
<td>VO(sal-SerGly)(H(_2)O)(_2)</td>
<td>44.2</td>
<td>3.9</td>
<td>8.3</td>
<td>15.7 ± 1; <0.1</td>
</tr>
<tr>
<td>VO(sal-SerGly)(H(_2)O)(_2)</td>
<td>44.46</td>
<td>4.04</td>
<td>8.64</td>
<td>15.73; 0</td>
</tr>
<tr>
<td>VO(sal-SerGly)(H(_2)O)(_2)</td>
<td>44.60</td>
<td>3.74</td>
<td>8.87</td>
<td>15.76; 0</td>
</tr>
<tr>
<td>VO(sal-DL-Ala-DL-Ala)(H(_2)O)(_3)</td>
<td>43.9</td>
<td>4.7</td>
<td>7.5</td>
<td>12.8 ± 1.5; <0.1</td>
</tr>
<tr>
<td>VO(sal-DL-Ala-DL-Ala)(H(_2)O)(_3)</td>
<td>43.83</td>
<td>4.81</td>
<td>7.86</td>
<td>14.30; 0</td>
</tr>
<tr>
<td>VO(sal-DL-Ala-DL-Ala)(H(_2)O)(_3)</td>
<td>43.96</td>
<td>4.54</td>
<td>7.89</td>
<td>14.34; 0</td>
</tr>
<tr>
<td>VO(sal-AlaAla)(H(_2)O)(_3)</td>
<td>42.4</td>
<td>4.6</td>
<td>7.7</td>
<td>13.1 ± 1.5; <0.3</td>
</tr>
<tr>
<td>VO(sal-AlaAla)(H(_2)O)(_3)</td>
<td>42.75</td>
<td>4.97</td>
<td>7.67</td>
<td>13.95; 0</td>
</tr>
<tr>
<td>VO(sal-AlaAla)(H(_2)O)(_3)</td>
<td>42.67</td>
<td>4.70</td>
<td>7.69</td>
<td>13.99; 0</td>
</tr>
<tr>
<td>VO(sal-SerGly)(H(_2)O)(_3)</td>
<td>40.8</td>
<td>3.8</td>
<td>7.6</td>
<td>43.9 ± 1; <0.2</td>
</tr>
<tr>
<td>VO(sal-SerGly)(H(_2)O)(_3)</td>
<td>40.24</td>
<td>4.22</td>
<td>7.82</td>
<td>14.22; 0</td>
</tr>
<tr>
<td>VO(sal-SerGly)(H(_2)O)(_3)</td>
<td>40.35</td>
<td>3.95</td>
<td>7.84</td>
<td>14.26; 0</td>
</tr>
</tbody>
</table>

\(^a\) For VO(sal-AlaSar) (10) the amount of solid available was not enough for elemental analysis. As solids 6–9 have non-satisfactory elemental analysis they are not included in the table.

\(^b\) Values of vanadium analysis within ± (1–1.5) may be considered acceptable, depending on the amount of solid used in each determination.
aldehyde/mercaptoethanol procedure for aminoacid analysis [26]. The presence of products in samples was confirmed by comparing their retention times with the dipeptide standards.

2.3. TLC experiments

Those preparations both where formulations do not agree with the elemental analysis, and for 1 were monitored by TLC, on Merck TLC plates (Art. 5626, 10 × 20 cm). Samples of 2 µl of the reaction mixture, and of similar samples after hydrolysis with HNO₃ were applied to the plates 20 mm from the bottom. Elution were carried out in Camag twin chambers with walls covered with filter paper impregnated with the eluent. Eluents used were: (A) 7:3 ethanol/water, (B) 10:10:2:5 n-butanol/ethanol/proponic acid/water. When the eluents reached ~120 mm from the bottom, the plates were removed and dried. The chromatogram was developed with a ninhydrin-collidine-copper solution prepared according to M offat and L ytle [27], followed by iodine vapour.

For preparative TLC we used Merck TLC plates (Art. 105745, 20 × 20 cm, 2 mm thickness). The acidified samples (1.0 ml) were applied as a streak using a syringe. Eluent B was used and a 1 × 20 cm part of the plate was developed with iodine vapour to localise the components. Due to a greater band broadening there is a much greater superposition of bands than for the analytical TLC plates. Those parts of the SerGly and ThrGly bands that appeared not to be contaminated were scraped with a spatula and the dipeptides extracted with water. After filtration and evaporation of the filtrate around 10 mg of each dipeptide were obtained (three plates for each reaction mixture).

2.4. Synthesis of SerGly and ThrGly

2.4.1. Procedure 1 (under N₂)

To 10.0 ml of an aqueous solution of GlyGly (0.66 g, 5 mmol), an ethanolic solution of salicyaldehyde (2.0 ml, 1.0 mmol) and VOSO₄·5H₂O (0.228 g, 0.90 mmol) in 5 ml of water were added. Na₂CO₃ was added until pH 8. Formaldehyde (0.5 ml) or acetaldehyde (0.5 ml) were also added. New 0.5 ml portions of these aldehydes were added every 15 min. Up to a total of 2.0 ml (27 mmol) and 2.5 ml (44 mmol), respectively.

2.4.2. Procedure 2 (under N₂)

To 10.0 ml of methanol, GlyGly (0.142 g, 1.07 mmol) and salicyaldehyde (0.11 ml, 0.86 mmol) were added. After stirring for ~5 min, VOSO₄·5H₂O (0.217 g, 0.857 mmol) was added. After ~5 min, 15 ml of methanol containing sodium methoxide (0.74 g, ~13 mmol) were added. Formaldehyde (0.5 ml) or acetaldehyde (0.5 ml) was then added. New 0.5 ml portions of the aldehydes were added every 15 min. Up to a total of 2.0 ml (27 mmol) and 2.5 ml (44 mmol), respectively.

The reactions described in procedures 1 and 2 were monitored by TLC using eluent B for ~3 h, using also standards of GlySer (RI = 0.11), SerGly (RI = 0.18) and GlyThr (RI = 0.18) in the same TLC plates. During elution the complexes hydrolyse extensively and the formation of either SerGly or ThrGly is confirmed by the presence of spots at Rf = 0.18 (SerGly) or Rf = 0.29 (ThrGly). A cd was added to samples to hydrolyse the vanadium complexes present in the reaction mixture and the acidified samples (pH ~1) were frozen and later analysed by HPLC. The presence of peaks at 17.0–17.2 min (SerGly), or 20.3–20.5 min (GlyThr) and 21.4–21.7 (ThrGly), confirmed the formation of either the serine- or threonine-containing dipeptides. In the same conditions, the GlyGly peak shows up at 19.0–19.2 min.

Reaction yields may be estimated from the HPLC band areas based on the mmol of GlyGly initially present: SerGly-20% (proc. 1) or 40% (proc. 2), and ThrGly-40% (proc. 1) or 70% (proc. 2). These agree with the dimension/intensity of the corresponding TLC spots. Due to overlapping bands (resulting in lower recovery for a better purity) the global yields of the products isolated by preparative TLC are much lower and may be grossly estimated as 5% for procedure 2.

2.5. Magnetic measurements

The magnetic susceptibilities of complexes 2 (20.06 mg) and 3 (18.5 mg) were measured in the range 5–296 K using a 7-Tesla Faraday Oxford Instruments system coupled to a Sartorius S3D-V microbalance, at 1 Tesla and with a 5 T/m gradient.

2.6. Spectroscopic measurements

The circular dichroism spectra were run on a Jasco 720 spectropolarimeter with the red sensitive (400–1000 nm) photomultiplier, isotropic absorption spectra with a Perkin–Elmer λ9 spectrophotometer, Electron Spin Resonance spectra on a Bruker ER 200d (connected to a Bruker B-M N C 5) spectrometer and IR either with a Perkin–Elmer 683 or a BioRad FTS 3000 M X FT-IR spectrometer.

2.7. CD spectra of solid complexes

Samples of compounds 1, 3–9 and of VO(salAlaSar) 10 were prepared as described previously [3], either dispersed in Nujol mulls or in KBr disks, and placed between two microscope slides. One to three of such paired microscope slides were placed in the sample compartment. Each final spectrum is the average of 4–6 spectra in all, recorded as described in Ref. [3].
The formation of a compound of vanadium(V) may be explained by the oxidation of oxovanadium(IV) by atmospheric oxygen. The NH\textsubscript{4}+ cations presumably form by deamination of the GlyAla present in solution. The compound is identical to those obtained from similar solutions containing not GlyAla or AlaGly, but either GlyGly [16] or L-Thr [19].

3.4. VO(salGlySer) (9)

Although a solid with unsatisfactory analysis precipitated about 1 h after mixing the reagents, the formation of the Schiff base complex is clearly seen a few minutes after addition of VO2+: spots S at R\textsubscript{f} = 0.72 and 0.56, for A and B, respectively, each tailing down towards the spots (PP) for the free dipeptide (R\textsubscript{f} = 0.32 and 0.18, for A and B, respectively). A product with R\textsubscript{f} = 0.55 and 0.58, for A and B, respectively, possibly a non-coordinated Schiff base, is also detected with ninhydrin even before the addition of VIVO2+. Two other weak spots are detected with iodine vapours.

3.5. VO(Sal-GlyA sp) (8)

Although a solid precipitated shortly after mixture of the reagents, its elemental analysis is incompatible with any simple formulation. The formation of the Schiff base complex is clearly seen with eluent A (spot S at R\textsubscript{f} = 0.62), while with eluent B most of the Schiff base decomposes during elution (R\textsubscript{f} \approx 0.50). The dipeptide is clearly detected (spots PP at R\textsubscript{f} = 0.32 and 0.16, for A and B, respectively). After about 1 h of VO2+ mixing the reagents, the additional spots that were detected with R\textsubscript{f} = 0.43 and 0.35 (eluent A) could correspond to aspartic acid and glycine, respectively. With eluent B the severe tailing of spot S is also compatible with partial decomposition of GlyA sp.

Attempts to produce the oxovanadium(IV) Schiff base complex of pyridoxal with GlyGly failed. The degree of formation of its complex in solution appears to be much lower than for the corresponding complex with salicylaldehyde, as no spot S was detected by TLC.

The π→π* transition at 380 nm, originating mainly in the azomethine chromophore, is clearly seen only if a 5–10-fold excess of GlyGly is used.

3.6. Magnetic moments

The magnetic susceptibilities of 2 and 3 were measured by the Faraday method between 5 and 296 K. For 2 the results (e.g. Fig. 1), particularly the \(\mu_{\text{eff}}\) values, are very similar to those obtained for 1 (see above). This is consistent with a compound with spin 1/2 per formula unit, suggesting that 2 is monomeric. For all complexes the plot of \(1/\chi\) versus T show slight deviations from linearity that can be accounted for
assuming a Curie–Weiss law and a temperature-independent paramagnetism (TIP) term: 2.3 \times 10^{-4} \text{ for } 2 \\
7.8 \times 10^{-4} \text{ for } 3. \text{ The Weiss constant } \theta \text{ is close to zero in both cases.}

At room temperature the \mu_{\text{eff}} \text{ values per V atom, obtained from the } \gamma_T \text{-TIP values, are } 1.70 \text{ for } 2 \\
1.60 \text{ for } 3. \text{ For } 3 \text{ this is slightly below the normal range (1.68–1.78) for oxovanadium(IV) complexes [28], but in the absence of further proof we assume a monomeric formulation for this compound.}

3.7. Infrared spectra

The IR of 1–6 and 10 show narrow bands, but are quite complex. All compounds present a broad band in the 3000–3500 cm$^{-1}$ region, which may be ascribed to hydrogen-bonded ν(O–H) and/or ν(N–H), and may also include ν(C–H). Except for 2 and 10, corresponding to GlySar and AlaSar, respectively, relatively sharp bands emerge from this broad band at 3578 cm$^{-1}$ (for 3, 1–9), possibly due to ν(O–H), and at 3230–3245 and 3090–3120 cm$^{-1}$ (for 1, 3–9), possibly amide N–H absorption [29,30].

A medium/strong band at 1530–1560 cm$^{-1}$, always present, may originate from the vibration of the (Ph−)C−C(−N) bond [31] and typifies complexes derived from salicylaldehyde [3,5,31,32]. All complexes present very strong and broad bands centred around 1630–1670 cm$^{-1}$; these may correspond to ν(C=N) and ν(COO), but either ν(C=O$_{\text{amide}}$; O$_{\text{amide}}$ coordinated) or ν(CON−; N$_{\text{amide}}$ coordinated) may also be present [33]. The bands are probably also broadened because of an overlap with aromatic ring-carbon stretching. In some cases, peaks at \sim1620–1660 cm$^{-1}$ and 1585–1605 cm$^{-1}$ emerge from the broad background. Bands at 1400–1420 cm$^{-1}$ may be ascribed to ν(COO). The ν(V=O) band appears in the range 950–995 cm$^{-1}$.

The spectra of complexes 7–9 show some relatively broad bands; this again suggests that the compounds may be impure, or are a mixture of complexes, or are of polymeric nature.

3.8. ESR spectra

The ESR spectra may help to elucidate which groups coordinate in equatorial position in solution. However, the present Schiff base complexes are only very slightly soluble in methanol and the species present in solution may differ from the solid state. The ESR of 1 was discussed previously [16]. Two species were detected and designated by A and B ($A < A_B$), which could be consistent with structures V and VI, respectively.

The X-band ESR spectrum of a powdered frozen sample of 2 gave a broad signal with $g = 1.977$, within the range normally found for VO$_2^+$ compounds [34]. No signal was detected at $g = 4$. In the spectrum of a frozen dilute methanolic solution of 2, only one species was detected and it could be simulated using the program EPR POW [35] yielding: $A_1, A_2 = 172, 62.8 \times 10^{-4}$ cm$^{-1}$ and $g_1, g_2 = 1.949, 1.979$. These results are as expected [3,5,36,37] for structures such as V1a or V1b.

3.9. Circular dichroism

Solids containing the dipeptides Gly-L-Ala, Gly-L-Asp, Gly-L-Ser, L-SerGly, D,L-Ala-D,L-Ala and GlyGly show little optical activity in the range 450–1000 nm: the signal is very low and noisy, with an apparent pattern of $-$, $+$, $-$, $-$, as the same type of spectrum was also obtained for 1 and 3 dispersed either in Nujol or in KBr disk, all these CD spectra nearly coincide with the base line. The CD spectrum of VO(sal-L-AlaSar) in KBr disk shows a pattern $+$, $-$, $-$, $-$, $-$, $-$, $-$, $-$, for bands II, Ib and Ia, respectively [38], and the signal is
stronger. The CD of 4 and 6 (Fig. 2), containing L-Ala-L-Ala and L-AlaGly, is significantly stronger showing bands at \(\approx 480 \, \text{(}\Delta \alpha > 0\text{)} \), \(\approx 580 \) and \(\approx 780 \text{ (4) or 820 nm (6) (both with } \Delta \alpha < 0\text{)} \). Although such CD spectra give no reliable quantitative information, their overall intensity for these sal-aa-aa complexes is lower than that for VO(sal-L-Ala)(H_2O) [3].

In the solid-state coordination, geometries such as V must be ruled out as the negative charge for V is not compatible with the Na^+ analyses (see above). This is also not in agreement with the CD spectra: for V, a relatively strong signal, would be expected for ligands sal-Gly-aa (aa = L-Ala, L-Ser, L-Asp), and this is not the case. The coordination geometry of the present Schiff base complexes therefore differs from that suggested for the Cu(II) complexes Na[Cu(sal-GlyGly)]·6H_2O [39, 40], where N amide is expected to coordinate.

The results for 2–10 discussed here and for 1 [16], particularly the \(\mu_{eq} \) values for 1 and 2, are in agreement with a monomeric formulation for these Schiff base complexes. For steric reasons one of these four donor atoms must be coordinated axially, but it is not clear if this is O amide or O carboxylate. Assuming the vicinal effect [41] is the determining factor for the CD signal, one would expect that equatorial coordination of COO\(^–\) in these VO(sal-Gly-L-aa) complexes would correspond to a relatively strong CD signal. This is not the case here (however, one should note that compounds 6–9 were not properly characterised). For coordination geometry such as VIB, which assumes equatorial coordination of COO\(^–\), one would expect a relatively strong CD signal for 4 and 7. In fact, 7 shows no optical activity and the pattern and intensity of the CD signal is similar for 4 and 6, indicating that the N-terminal residue is the relevant one in determining the CD signal. This suggests O amide coordinates equatorially, VIA being the relevant structure for this set of Schiff base complexes.

Compound 5, containing SerGly, shows no optical activity in the visible range. As it took 2 days to precipitate, the L-Ser residue may have racemised, as observed with L-serine [19] and asparagine [42] in similar conditions. Racemisation at the N-terminal residue is a known process, e.g. Cu\(^{II}\)(sal-aa-aa) complexes as well as specific activation in the N-terminal residue of GlyGly and aldol-type condensations with formaldehyde and acetaldehyde to yield SerGly and ThrGly, respectively [40, 42].

We describe here the formation of seryl- and threonylglycine by reaction of VO(salGlyGly) with HCHO and CH_2CHO, respectively. The Schiff base complexes with Co(III), Ni(II), [43] and Cu(II) [40] show activation in the N-terminal residue. The presence of the metal ion contributes to the formation of the Schiff base and may lead to selective bond cleavage formation and at least in the experimental conditions described above (procedures 1 and 2) the reaction does not proceed in the absence of the metal ion. The mechanism presumably involves intermediate oxazolidine-type complexes [44–47]. In fact, in a few cases such complexes have been isolated and characterised by X-ray diffraction. In our systems no characterisable solids were obtained from the reaction mixtures that could correspond to the product peptide Schiff base complexes.

In the present VO(sal-dipeptide) complexes the N amide is not coordinated, as expected for the Schiff base-dipeptide complexes of Co(III), Cu(II) and Ni(II), but the selective activation in the N-terminal residue of GlyGly again indicates that the coordination geometry corresponds to VIA and not to VIB. In fact, it has been proposed for reactions catalysed both in enzymes [48–50] and in N-pyridoxyldeneamino acidato complexes that the bond to be broken should be the one that achieves maximal orbital overlap with the \(\pi \) system of the ligand, i.e. it should be perpendicular to the plane of the extended conjugated system of the ligand. In the present vanadium Schiff base complexes, the fastest reactions appear to be racemisations and aldol-type condensations, and the requisite geometry is available only in the case of VIA.

Acknowledgements

We thank Fundo Europeu para o Desenvolvimento Regional and Fundação para a Ciência e Tecnologia (project: PRAXIS/2.2.1/QUI/151/94) for financial support.

References

[35] EPRPOW, developed by L.K. White and R.L. Belford (University of Illinois) and modified by L.K. White, N.F. Albanese and R.D. Chasteen (University of New Hampshire) to include both Lorentzian and Gaussian line shape functions, an I = 7/2 nucleus, a 4th hyperfine interaction and multiple sites having different linewidths, 1978.